Unraveling the Significance of Nanog in the Generation of Embryonic Stem-like Cells from Spermatogonia Stem Cells: A Combined In Silico Analysis and In Vitro Experimental Approach

Author:

Ghasemi Nima1ORCID,Azizi Hossein1ORCID,Skutella Thomas2ORCID

Affiliation:

1. Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol 49767, Iran

2. Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany

Abstract

Embryonic stem-like cells (ES-like cells) are promising for medical research and clinical applications. Traditional methods involve “Yamanaka” transcription (OSKM) to derive these cells from somatic cells in vitro. Recently, a novel approach has emerged, obtaining ES-like cells from spermatogonia stem cells (SSCs) in a time-related process without adding artificial additives to cell cultures, like transcription factors or small molecules such as pten or p53 inhibitors. This study aims to investigate the role of the Nanog in the conversion of SSCs to pluripotent stem cells through both in silico analysis and in vitro experiments. We used bioinformatic methods and microarray data to find significant genes connected to this derivation path, to construct PPI networks, using enrichment analysis, and to construct miRNA-lncRNA networks, as well as in vitro experiments, immunostaining, and Fluidigm qPCR analysis to connect the dots of Nanog significance. We concluded that Nanog is one of the most crucial differentially expressed genes during SSC conversion, collaborating with critical regulators such as Sox2, Dazl, Pou5f1, Dnmt3, and Cdh1. This intricate protein network positions Nanog as a pivotal factor in pathway enrichment for generating ES-like cells, including Wnt signaling, focal adhesion, and PI3K-Akt-mTOR signaling. Nanog expression is presumed to play a vital role in deriving ES-like cells from SSCs in vitro. Finding its pivotal role in this path illuminates future research and clinical applications.

Publisher

MDPI AG

Reference33 articles.

1. Embryonic stem cell-like cells derived from adult human testis;Mizrak;Hum. Reprod.,2010

2. Derivation of Pluripotent Cells from Mouse SSCs Seems to Be Age Dependent;Azizi;Stem Cells Int.,2016

3. Spermatogonial stem cells are a promising and pluripotent cell source for regenerative medicine;Chen;Am. J. Transl. Res.,2020

4. Pluripotency Potential of Embryonic Stem Cell-Like Cells Derived from Mouse Testis;Azizi;Cell J.,2019

5. Induction of pluripotency in adult unipotent germline stem cells;Ko;Cell Stem Cell,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3