Unlocking Preclinical Alzheimer’s: A Multi-Year Label-Free In Vitro Raman Spectroscopy Study Empowered by Chemometrics

Author:

Lopez Eneko12ORCID,Etxebarria-Elezgarai Jaione1,García-Sebastián Maite3ORCID,Altuna Miren3ORCID,Ecay-Torres Mirian3,Estanga Ainara3,Tainta Mikel3,López Carolina3,Martínez-Lage Pablo3,Amigo Jose Manuel45ORCID,Seifert Andreas14ORCID

Affiliation:

1. CIC nanoGUNE BRTA, 20018 San Sebasián, Spain

2. Department of Physics, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain

3. Center for Research and Advanced Therapies, CITA-Alzhéimer Foundation, 20009 San Sebastián, Spain

4. IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain

5. Department of Analytical Chemistry, University of the Basque Country, 48940 Leioa, Spain

Abstract

Alzheimer’s disease is a progressive neurodegenerative disorder, the early detection of which is crucial for timely intervention and enrollment in clinical trials. However, the preclinical diagnosis of Alzheimer’s encounters difficulties with gold-standard methods. The current definitive diagnosis of Alzheimer’s still relies on expensive instrumentation and post-mortem histological examinations. Here, we explore label-free Raman spectroscopy with machine learning as an alternative to preclinical Alzheimer’s diagnosis. A special feature of this study is the inclusion of patient samples from different cohorts, sampled and measured in different years. To develop reliable classification models, partial least squares discriminant analysis in combination with variable selection methods identified discriminative molecules, including nucleic acids, amino acids, proteins, and carbohydrates such as taurine/hypotaurine and guanine, when applied to Raman spectra taken from dried samples of cerebrospinal fluid. The robustness of the model is remarkable, as the discriminative molecules could be identified in different cohorts and years. A unified model notably classifies preclinical Alzheimer’s, which is particularly surprising because of Raman spectroscopy’s high sensitivity regarding different measurement conditions. The presented results demonstrate the capability of Raman spectroscopy to detect preclinical Alzheimer’s disease for the first time and offer invaluable opportunities for future clinical applications and diagnostic methods.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3