The Deep Proteomics Approach Identified Extracellular Vesicular Proteins Correlated to Extracellular Matrix in Type One and Two Endometrial Cancer

Author:

Capaci Valeria1ORCID,Kharrat Feras1ORCID,Conti Andrea1ORCID,Salviati Emanuela2ORCID,Basilicata Manuela Giovanna3ORCID,Campiglia Pietro2ORCID,Balasan Nour1,Licastro Danilo4,Caponnetto Federica5,Beltrami Antonio Paolo56ORCID,Monasta Lorenzo1ORCID,Romano Federico1ORCID,Di Lorenzo Giovanni1ORCID,Ricci Giuseppe17ORCID,Ura Blendi1

Affiliation:

1. Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy

2. Department of Pharmacy, University of Salerno, 84084 Salerno, Italy

3. Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy

4. AREA Science Park, Basovizza, 34149 Trieste, Italy

5. Department of Medicine, University of Udine, 33100 Udine, Italy

6. Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy

7. Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy

Abstract

Among gynecological cancers, endometrial cancer is the most common in developed countries. Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles that contain proteins involved in immune response and apoptosis. A deep proteomic approach can help to identify dysregulated extracellular matrix (ECM) proteins in EVs correlated to key pathways for tumor development. In this study, we used a proteomics approach correlating the two acquisitions—data-dependent acquisition (DDA) and data-independent acquisition (DIA)—on EVs from the conditioned medium of four cell lines identifying 428 ECM proteins. After protein quantification and statistical analysis, we found significant changes in the abundance (p < 0.05) of 67 proteins. Our bioinformatic analysis identified 26 pathways associated with the ECM. Western blotting analysis on 13 patients with type 1 and type 2 EC and 13 endometrial samples confirmed an altered abundance of MMP2. Our proteomics analysis identified the dysregulated ECM proteins involved in cancer growth. Our data can open the path to other studies for understanding the interaction among cancer cells and the rearrangement of the ECM.

Funder

Italian Ministry of Health

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3