Assessing the Ability of Genetic Programming for Feature Selection in Constructing Dispatching Rules for Unrelated Machine Environments

Author:

Đurasević Marko1,Jakobović Domagoj1ORCID,Picek Stjepan2ORCID,Mariot Luca3ORCID

Affiliation:

1. Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia

2. Digital Security Group, Radboud University, 6525 XZ Nijmegen, The Netherlands

3. Semantics, Cybersecurity and Services Group, University of Twente, 7522 NB Enschede, The Netherlands

Abstract

The automated design of dispatching rules (DRs) with genetic programming (GP) has become an important research direction in recent years. One of the most important decisions in applying GP to generate DRs is determining the features of the scheduling problem to be used during the evolution process. Unfortunately, there are no clear rules or guidelines for the design or selection of such features, and often the features are simply defined without investigating their influence on the performance of the algorithm. However, the performance of GP can depend significantly on the features provided to it, and a poor or inadequate selection of features for a given problem can result in the algorithm performing poorly. In this study, we examine in detail the features that GP should use when developing DRs for unrelated machine scheduling problems. Different types of features are investigated, and the best combination of these features is determined using two selection methods. The obtained results show that the design and selection of appropriate features are crucial for GP, as they improve the results by about 7% when only the simplest terminal nodes are used without selection. In addition, the results show that it is not possible to outperform more sophisticated manually designed DRs when only the simplest problem features are used as terminal nodes. This shows how important it is to design appropriate composite terminal nodes to produce high-quality DRs.

Funder

Croatian Science Foundation

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3