Leveraging Self-Attention Mechanism for Attitude Estimation in Smartphones

Author:

Brotchie JamesORCID,Shao Wei,Li WenchaoORCID,Kealy Allison

Abstract

Inertial attitude estimation is a crucial component of many modern systems and applications. Attitude estimation from commercial-grade inertial sensors has been the subject of an abundance of research in recent years due to the proliferation of Inertial Measurement Units (IMUs) in mobile devices, such as the smartphone. Traditional methodologies involve probabilistic, iterative-state estimation; however, these approaches do not generalise well over changing motion dynamics and environmental conditions, as they require context-specific parameter tuning. In this work, we explore novel methods for attitude estimation from low-cost inertial sensors using a self-attention-based neural network, the Attformer. This paper proposes to part ways from the traditional cycle of continuous integration algorithms, and formulate it as an optimisation problem. This approach separates itself by leveraging attention operations to learn the complex patterns and dynamics associated with inertial data, allowing for the linear complexity in the dimension of the feature vector to account for these patterns. Additionally, we look at combining traditional state-of-the-art approaches with our self-attention method. These models were evaluated on entirely unseen sequences, over a range of different activities, users and devices, and compared with a recent alternate deep learning approach, the unscented Kalman filter and the iOS CoreMotion API. The inbuilt iOS had a mean angular distance from the true attitude of 117.31∘, the GRU 21.90∘, the UKF 16.38∘, the Attformer 16.28∘ and, finally, the UKF–Attformer had mean angular distance of 10.86∘. We show that this plug-and-play solution outperforms previous approaches and generalises well across different users, devices and activities.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3