Hydrotropism: Understanding the Impact of Water on Plant Movement and Adaptation

Author:

Gul Malik Urfa1ORCID,Paul Anand12ORCID,S Manimurugan3ORCID,Chehri Abdellah4ORCID

Affiliation:

1. Department of Computer Science & Engineering, Kyungpook National University Daegu, Daegu 41566, Republic of Korea

2. Department of Computer Science & Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, India

3. Department of Computer Engineering, University of Tabuk, Tabuk P.O. Box 741, Saudi Arabia

4. Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada

Abstract

Hydrotropism is the movement or growth of a plant towards water. It is a type of tropism, or directional growth response, that is triggered by water. Plants are able to detect water through various stimuli, including changes in moisture levels and changes in water potential. The purpose of this study is to provide an overview of how root movement towards water and plant water uptake are stabilized. The impact of hydrotropism on plants can be significant. It can help plants to survive in environments where water is scarce, and it can also help them to grow more efficiently by directing their roots towards the most nutrient-rich soil. To make sure that plant growth and water uptake are stabilized, plants must sense water. Flowing down the roots, being absorbed by roots, and evaporating from the leaves are all processes that are governed by plant physiology and soil science. Soil texture and moisture affect water uptake. Hydraulic resistances can impede plants’ water absorption, while loss of water and water movement can change plants’ water potential gradients. Growth causes water potential gradients. Plants respond to gradient changes. Stomata and aquaporins govern water flow and loss. When water is scarce, stomatal closure and hydraulic conductance adjustments prevent water loss. Plants adapt to water stream changes by expanding their roots towards water and refining the architecture of their roots. Our study indicates that water availability, or gradients, are impacted by systemic and local changes in water availability. The amount of water available is reflected in plant turgor. There is still a lot of work to be done regarding the study of how the loss and availability of water affect plant cells, as well as how biophysical signals are transformed in a certain way during their transmission into chemical signals so that pathways such as abscisic acid response or organ development can be fed with information.

Funder

BK21 Four Project, AI-Driven Convergence Software Education Research Program

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3