Compartmentalization of Resistance-Associated Substitutions in HIV/HCV-Infected Patients: Possible Correlation with Infecting HCV Genotype

Author:

Morsica GiuliaORCID,Vercesi Riccardo,Hasson Hamid,Messina Emanuela,Uberti-Foppa CaterinaORCID,Bagaglio Sabrina

Abstract

Resistance-associated substitutions (RASs) may exist prior to treatment and contribute to the failure of treatment with direct-acting antivirals (DAAs). As the major site of HCV replication, naturally occurring variants with RASs may segregate into the liver. In the present study, we performed viral population sequencing to retrospectively investigate the NS3 and NS5A RAS profiles in 34 HIV/HCV coinfected patients naïve to anti-HCV treatment who underwent diagnostic liver biopsy between 2000 and 2006 and had liver and plasma samples available. Sixteen were infected by HCV genotype (GT) 1a, 11 by GT3a, and 7 by GT4d. The analysis of the NS3 domain in GT1a showed a difference in strain between the liver and plasma in three cases, with a preponderance of specific RASs in the liver compartment. In GT4d samples, 6/7 coupled liver and plasma samples were concordant with no RASs. Sequence analysis of the NS5A domain showed the presence of RASs in the livers of 2/16 patients harboring GT1a but not in the corresponding plasma. In GT4d, NS5A RASs were detected in 7/7 liver tissues and 5/7 plasma samples. NS3 domain and NS5A domain were found to be conserved in plasma and livers of patients infected with GT3a. Thus, RASs within GT1a and GT4d more likely segregate into the liver and may explain the emergence of resistant strains during DAA treatment.

Funder

Gilead Sciences

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-World Therapeutic Outcomes of Direct-Acting Antiviral Regimens and Formidable Challenges;Hepatitis C Virus-Host Interactions and Therapeutics: Current Insights and Future Perspectives;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3