Abstract
Piezoelectric energy harvesters are appealing for the improvement of wearable electronics, owing to their excellent mechanical and electrical properties. Herein, screen-printed piezoelectric nanogenerators (PENGs) are developed from triethoxy(octyl)silane-coated barium titanate/polyvinylidene fluoride (TOS-BTO/PVDF) nanocomposites with excellent performance based on the important link between material, structure, and performance. In order to minimize the effect of nanofiller agglomeration, TOS-coated BTO nanoparticles are anchored onto PVDF. Thus, composites with well-distributed TOS-BTO nanoparticles exhibit fewer defects, resulting in reduced charge annihilation during charge transfer from inorganic nanoparticles to the polymer. Consequently, the screen-printed TOS-BTO/PVDF PENG exhibits a significantly enhanced output voltage of 20 V, even after 7500 cycles, and a higher power density of 15.6 μW cm−2, which is 200 and 150% higher than those of pristine BTO/PVDF PENGs, respectively. The increased performance of TOS-BTO/PVDF PENGs is due to the enhanced compatibility between nanofillers and polymers and the resulting improvement in dielectric response. Furthermore, as-printed devices could actively adapt to human movements and displayed excellent detection capability. The screen-printed process offers excellent potential for developing flexible and high-performance piezoelectric devices in a cost-effective and sustainable way.
Funder
Jeonbuk National University
National Research Foundation of Korea
Korea Institute for Advancement of Technology
Subject
General Materials Science,General Chemical Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献