Mechanical Properties and Antibacterial Effect on Mono-Strain of Streptococcus mutans of Orthodontic Cements Reinforced with Chlorhexidine-Modified Nanotubes

Author:

Salmerón-Valdés Elias NahumORCID,Cruz-Mondragón Ana CeciliaORCID,Toral-Rizo Víctor Hugo,Jiménez-Rojas Leticia Verónica,Correa-Prado Rodrigo,Lara-Carrillo Edith,Morales-Valenzuela Adriana Alejandra,Scougall-Vilchis Rogelio JoséORCID,López-Flores Alejandra Itzel,Hoz-Rodriguez LiaORCID,Velásquez-Enríquez Ulises

Abstract

Recently, several studies have introduced nanotechnology into the area of dental materials with the aim of improving their properties. The objective of this study is to determine the antibacterial and mechanical properties of type I glass ionomers reinforced with halloysite nanotubes modified with 2% chlorhexidine at concentrations of 5% and 10% relative to the total weight of the powder used to construct each sample. Regarding antibacterial effect, 200 samples were established and distributed into four experimental groups and six control groups (4 +ve and 2 −ve), with 20 samples each. The mechanical properties were evaluated in 270 samples, assessing microhardness (30 samples), compressive strength (120 samples), and setting time (120 samples). The groups were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy, and the antibacterial activity of the ionomers was evaluated on Streptococcus mutans for 24 h. The control and positive control groups showed no antibacterial effect, while the experimental group with 5% concentration showed a zone of growth inhibition between 11.35 mm and 11.45 mm, and the group with 10% concentration showed a zone of growth inhibition between 12.50 mm and 13.20 mm. Statistical differences were observed between the experimental groups with 5% and 10% nanotubes. Regarding the mechanical properties, microhardness, and setting time, no statistical difference was found when compared with control groups, while compressive strength showed higher significant values, with ionomers modified with 10% concentration of nanotubes resulting in better compressive strength values. The incorporation of nanotubes at concentrations of 5% and 10% effectively inhibited the presence of S. mutans, particularly when the dose–response relationship was taken into account, with the advantage of maintaining and improving their mechanical properties.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3