Data-Enhanced Deep Greedy Optimization Algorithm for the On-Demand Inverse Design of TMDC-Cavity Heterojunctions

Author:

Zhao Zeyu,You JieORCID,Zhang Jun,Tang Yuhua

Abstract

A data-enhanced deep greedy optimization (DEDGO) algorithm is proposed to achieve the efficient and on-demand inverse design of multiple transition metal dichalcogenides (TMDC)-photonic cavity-integrated heterojunctions operating in the strong coupling regime. Precisely, five types of photonic cavities with different geometrical parameters are employed to alter the optical properties of monolayer TMDC, aiming at discovering new and intriguing physics associated with the strong coupling effect. Notably, the traditional rigorous coupled wave analysis (RCWA) approach is utilized to generate a relatively small training dataset for the DEDGO algorithm. Importantly, one remarkable feature of DEDGO is the integration the decision theory of reinforcement learning, which remedies the deficiencies of previous research that focused more on modeling over decision making, increasing the success rate of inverse prediction. Specifically, an iterative optimization strategy, namely, deep greedy optimization, is implemented to improve the performance. In addition, a data enhancement method is also employed in DEDGO to address the dependence on a large amount of training data. The accuracy and effectiveness of the DEDGO algorithm are confirmed to be much higher than those of the random forest algorithm and deep neural network, making possible the replacement of the time-consuming conventional scanning optimization method with the DEDGO algorithm. This research thoroughly describes the universality, interpretability, and excellent performance of the DEDGO algorithm in exploring the underlying physics of TMDC-cavity heterojunctions, laying the foundations for the on-demand inverse design of low-dimensional material-based nano-devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation for Distinguished Young Scholars of Hunan Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3