Electrospun Chitosan–Polyvinyl Alcohol Nanofiber Dressings Loaded with Bioactive Ursolic Acid Promoting Diabetic Wound Healing

Author:

Lv Hongyu,Zhao Meng,Li Yiran,Li Kun,Chen Shaojuan,Zhao Wenwen,Wu Shaohua,Han Yantao

Abstract

The design and development of novel dressing materials are urgently required for the treatment of chronic wounds caused by diabetic ulcers in clinics. In this study, ursolic acid (UA) extracted from Chinese herbal plants was encapsulated into electrospun nanofibers made from a blend of chitosan (CS) and polyvinyl alcohol (PVA) to generate innovative CS-PVA-UA dressings for diabetic wound treatment. The as-prepared CS-PVA-UA nanofiber mats exhibited randomly aligned fiber morphology with the mean fiber diameters in the range of 100–200 nm, possessing great morphological resemblance to the collagen fibrils which exist in the native skin extracellular matrix (ECM). In addition, the CS-PVA-UA nanofiber mats were found to possess good surface hydrophilicity and wettability, and sustained UA release behavior. The in vitro biological tests showed that the high concentration of UA could lead to slight cytotoxicity. It was also found that the CS-PVA-UA nanofiber dressings could significantly reduce the M1 phenotypic transition of macrophages that was even stimulated by lipopolysaccharide (LPS) and could effectively restore the M2 polarization of macrophages to shorten the inflammatory period. Moreover, the appropriate introduction of UA into CS-PVA nanofibers decreased the release levels of TNF-α and IL-6 inflammatory factors, and suppressed oxidative stress responses by reducing the generation of reactive oxygen species (ROS) as well. The results from mouse hepatic hemorrhage displayed that CS-PVA-UA nanofiber dressing possessed excellent hemostatic performance. The in vivo animal experiments displayed that the CS-PVA-UA nanofiber dressing could improve the closure rate, and also promote the revascularization and re-epithelization, as well as the deposition and remodeling of collagen matrix and the regeneration of hair follicles for diabetic wounds. Specifically, the mean contraction rate of diabetic wounds using CS-PVA-UA nanofiber dressing could reach 99.8% after 18 days of treatment. In summary, our present study offers a promising nanofibrous dressing candidate with multiple biological functions, including anti-inflammation, antioxidation, pro-angiogenesis, and hemostasis functions, for the treatment of hard-to-heal diabetic wounds.

Funder

China Postdoctoral Science Foundation

Shandong Traditional Chinese Medicine Science and Technology Project

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3