Fabrication of an Organofunctionalized Talc-like Magnesium Phyllosilicate for the Electrochemical Sensing of Lead Ions in Water Samples

Author:

Pecheu Chancellin Nkepdep,Jiokeng Sherman Lesly ZambouORCID,Tamo Arnaud KamdemORCID,Doungmo Giscard,Doench Ingo,Osorio-Madrazo AnayancyORCID,Tonle Ignas KenfackORCID,Ngameni Emmanuel

Abstract

A talc-like magnesium phyllosilicate functionalized with amine groups (TalcNH2), useful as sensor material in voltammetry stripping analysis, was synthesized by a sol–gel-based processing method. The characterizations of the resulting synthetic organoclay by scanning electron microscopy (SEM), X-ray diffraction, N2 sorption isotherms (BET method), Fourier transform infrared spectroscopy (FTIR), CHN elemental analysis and UV–Vis diffuse reflectance spectroscopy (UV–Vis-DRS) demonstrated the effectiveness of the process used for grafting of amine functionality in the interlamellar clay. The results indicate the presence of organic moieties covalently bonded to the inorganic lattice of talc-like magnesium phyllosilicate silicon sheet, with interlayer distances of 1568.4 pm. In an effort to use a talc-like material as an electrode material without the addition of a dispersing agent and/or molecular glue, the TalcNH2 material was successfully dispersed in distilled water in contrast to natural talc. Then, it was used to modify a glassy carbon electrode (GCE) by drop coating. The characterization of the resulting modified electrode by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) revealed its charge selectivity ability. In addition, EIS results showed low charge transfer resistance (0.32 Ω) during the electro-oxidation of [Fe(CN)6]3−. Kinetics studies were also performed by EIS, which revealed that the standard heterogeneous electron transfer rate constant was (0.019 ± 0.001) cm.s−1, indicating a fast direct electron transfer rate of [Fe(CN)6]3− to the electrode. Using anodic adsorptive stripping differential pulse voltammetry (DPV), fast and highly sensitive determination of Pb(II) ions was achieved. The peak current of Pb2+ ions on TalcNH2/GCE was about three-fold more important than that obtained on bare GCE. The calculated detection and quantification limits were respectively 7.45 × 10−8 M (S/N = 3) and 24.84 × 10−8 M (S/N 10), for the determination of Pb2+ under optimized conditions. The method was successfully used to tap water with satisfactory results. The results highlight the efficient chelation of Pb2+ ions by the grafted NH2 groups and the potential of talc-like amino-functionalized magnesium phyllosilicate for application in electrochemical sensors.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3