In Situ Measurements of Strain Evolution in Graphene/Boron Nitride Heterostructures Using a Non-Destructive Raman Spectroscopy Approach

Author:

Mezzacappa Marc,Alameri Dheyaa,Thomas Brian,Kim Yoosuk,Lei Chi-Hou,Kuljanishvili IrmaORCID

Abstract

The mechanical properties of engineered van der Waals (vdW) 2D materials and heterostructures are critically important for their implementation into practical applications. Using a non-destructive Raman spectroscopy approach, this study investigates the strain evolution of single-layer graphene (SLGr) and few-layered boron nitride/graphene (FLBN/SLGr) heterostructures. The prepared 2D materials are synthesized via chemical vapor deposition (CVD) method and then transferred onto flexible polyethylene terephthalate (PET) substrates for subsequent strain measurements. For this study, a custom-built mechanical device-jig is designed and manufactured in-house to be used as an insert for the 3D piezoelectric stage of the Raman system. In situ investigation of the effects of applied strain in graphene detectable via Raman spectral data in characteristic bonds within SLGr and FLBN/SLGr heterostructures is carried out. The in situ strain evolution of the FLBN/SLGr heterostructures is obtained in the range of (0–0.5%) strain. It is found that, under the same strain, SLG exhibits a higher Raman shift in the 2D band as compared with FLBN/SLGr heterostructures. This research leads to a better understanding of strain dissipation in vertical 2D heterostacks, which could help improve the design and engineering of custom interfaces and, subsequently, control lattice structure and electronic properties. Moreover, this study can provide a new systematic approach for precise in situ strain assessment and measurements of other CVD-grown 2D materials and their heterostructures on a large scale for manufacturing a variety of future micro- and nano-scale devices on flexible substrates.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3