Bacterial Surface Disturbances Affecting Cell Function during Exposure to Three-Compound Nanocomposites Based on Graphene Materials

Author:

Lange AgataORCID,Sawosz Ewa,Daniluk Karolina,Wierzbicki MateuszORCID,Małolepszy ArturORCID,Gołębiewski MarcinORCID,Jaworski Sławomir

Abstract

Combating pathogenic microorganisms in an era of ever-increasing drug resistance is crucial. The aim of the study was to evaluate the antibacterial mechanism of three-compound nanocomposites that were based on graphene materials. To determine the nanomaterials’ physicochemical properties, an analysis of the mean hydrodynamic diameter and zeta potential, transmission electron microscope (TEM) visualization and an FT-IR analysis were performed. The nanocomposites’ activity toward bacteria species was defined by viability, colony forming units, conductivity and surface charge, cell wall integrity, ATP concentration, and intracellular pH. To ensure the safe usage of nanocomposites, the presence of cytokines was also analyzed. Both the graphene and graphene oxide (GO) nanocomposites exhibited a high antibacterial effect toward all bacteria species (Enterobacter cloacae, Listeria monocytogenes, Salmonella enterica, and Staphylococcus aureus), as well as exceeded values obtained from exposure to single nanoparticles. Nanocomposites caused the biggest membrane damage, along with ATP depletion. Nanocomposites that were based on GO resulted in lower toxicity to the cell line. In view of the many aspects that must be considered when investigating such complex structures as are three-component nanocomposites, studies of their mechanism of action are crucial to their potential antibacterial use.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3