Facile Synthesis of NixCo3−xS4 Microspheres for High-Performance Supercapacitors and Alkaline Aqueous Rechargeable NiCo-Zn Batteries

Author:

Zhang Daojun,Jiang Bei,Li Chengxiang,Bian Hao,Liu Yang,Bu Yingping,Zhang Renchun,Zhang Jingchao

Abstract

Electrochemical energy storage devices (EESDs) have caused widespread concern, ascribed to the increasing depletion of traditional fossil energy and environmental pollution. In recent years, nickel cobalt bimetallic sulfides have been regarded as the most attractive electrode materials for super-performance EESDs due to their relatively low cost and multiple electrochemical reaction sites. In this work, NiCo-bimetallic sulfide NixCo3−xS4 particles were synthesized in a mixed solvent system with different proportion of Ni and Co salts added. In order to improve the electrochemical performance of optimized Ni2.5Co0.5S4 electrode, the Ni2.5Co0.5S4 particles were annealed at 350 °C for 60 min (denoted as Ni2.5Co0.5S4-350), and the capacity and rate performance of Ni2.5Co0.5S4-350 was greatly improved. An aqueous NiCo-Zn battery was assembled by utilizing Ni2.5Co0.5S4-350 pressed onto Ni form as cathode and commercial Zn sheet as anode. The NiCo-Zn battery based on Ni2.5Co0.5S4-350 cathode electrode delivers a high specific capacity of 232 mAh g−1 at 1 A g−1 and satisfactory cycling performance (65% capacity retention after 1000 repeated cycles at 8 A g−1). The as-assembled NiCo-Zn battery deliver a high specific energy of 394.6 Wh kg−1 and long-term cycling ability. The results suggest that Ni2.5Co0.5S4-350 electrode has possible applications in the field of alkaline aqueous rechargeable electrochemical energy storage devices for supercapacitor and NiCo-Zn battery.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3