Ex Situ Synthesis and Characterizations of MoS2/WO3 Heterostructures for Efficient Photocatalytic Degradation of RhB

Author:

Shahid Wajeehah,Idrees FaryalORCID,Iqbal Muhammad AamirORCID,Tariq Muhammad Umair,Shahid Samiah,Choi Jeong Ryeol

Abstract

In this study, novel hydrothermal ex situ synthesis was adopted to synthesize MoS2/WO3 heterostructures using two different molar ratios of 1:1 and 1:4. The “bottom-up” assembly was successfully developed to synthesize spherical and flaky-shaped heterostructures. Their structural, morphological, compositional, and bandgap characterizations were investigated through XRD, EDX, SEM, UV-Visible spectroscopy, and FTIR analysis. These analyses help to understand the agglomerated heterostructures of MoS2/WO3 for their possible photocatalytic application. Therefore, prepared heterostructures were tested for RhB photodegradation using solar light irradiation. The % efficiency of MoS2/WO3 composites for 30 min irradiation of 1:1 was 91.41% and for 1:4 was 98.16%. Similarly, the % efficiency of 1:1 MoS2/WO3 heterostructures for 60 min exposure was 92.68%; for 1:4, it was observed as 98.56%; and for 90 min exposure, the % efficiency of 1:1 was 92.41%, and 98.48% was calculated for 1:4 composites. The photocatalytic efficiency was further verified by reusability experiments (three cycles), and the characterization results afterward indicated the ensemble of crystalline planes that were responsible for the high efficiency. Moreover, these heterostructures showed stability over three cycles, indicating their future applications for other photocatalytic applications.

Funder

Pakistan Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3