Environmental Restoration and Changes of Sediment and Hydrodynamic Parameters in a Section of a Renaturalised Lowland Watercourse

Author:

Zaborowski Stanisław1ORCID,Kałuża Tomasz1ORCID,Jusik Szymon2ORCID,Dysarz Tomasz1ORCID,Hämmerling Mateusz1ORCID

Affiliation:

1. Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland

2. Department of Ecology and Environmental Protection, Poznań University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland

Abstract

In Europe, the routes of most watercourses were straightened and shortened, leading to the destruction and degradation of many natural environments. Currently, in places where it is possible, as part of the implementation of the Water Framework Directive, efforts are made to improve environmental sustainability, including improving the ecological condition of rivers. This paper presents the impact of three in-stream deflectors on changes in the section of a small lowland river—the Flinta (Poland)—where (from 2018 to 2023) detailed, systematic geodetic, and hydrometric research and an assessment of the ecological conditions were carried out. The presented results show the influence of deflectors on the initiation of fluvial processes in the transverse and longitudinal layouts of the channel. The river channel was narrowed from 6 to 5 m, and the current line shifted by almost 3 m. Changes were observed in the distribution of velocities and shear stresses, varying along the surveyed section of the river. In the first year after their application, an increase in velocity at the deflectors can be observed (from 0.2 m∙s−1 to 0.6 m∙s−1 in the deflector cross-section). In the following years, on the other hand, a clear decrease in velocity was observed in the sections between the deflectors (to 0.3 m∙s−1). The introduction of deflectors resulted in a significant increase in the values of shear stresses (from an average value of 0.0241 N∙m−2 in 2018 to 0.2761 N∙m−2 in 2023) and local roughness coefficients (from 0.045 s∙m−1/3 before the introduction of the deflectors to 0.070 s∙m−1/3 in 2023). Based on analyses of sediment samples, erosion and accumulation of bottom material were initially observed, followed by a subsequent stabilisation of particle size. Differences in grain size were observed, especially in the cross-section of the deflectors (increase in granularity d50% downstream of the deflector from 0.31 mm to 3.9 mm already 2 years after the introduction of deflectors). This study confirmed the positive impact of using deflectors on hydromorphological processes as deflectors facilitate the achievement of a good ecological status, as required by the WFD. The innovation of this paper lies in demonstrating the possibility of using small, simple structures to initiate and intensify fluvial processes, which may contribute to improving the ecological conditions of watercourses.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3