Scenario-Based Green Infrastructure Installations for Building Urban Stormwater Resilience—A Case Study of Fengxi New City, China

Author:

Mao Yuyang1,Li Yu1,Bai Xinlu1,Yang Xiaolu1,Han Youting1,Fu Xin1ORCID

Affiliation:

1. College of Landscape Architecture and Arts, Northwest A&F University, Xianyang 712100, China

Abstract

Global climate change has precipitated a surge in urban flooding challenges, prompting the imperative role of green infrastructure (GI) as the linchpin of sponge city construction to enhance urban sustainability and resilience. But the evaluation of urban stormwater resilience faces challenges due to the lack of a comprehensive evaluation framework taking the intrinsic features of the resilience system into account and the insufficient coverage of alternative scenarios’ performance under multiple rainfall return periods. This study, focusing on Fengxi New City, China, evaluates the suitability of GI (i.e., green roofs, rain gardens, and permeable pavements) and constructs a stormwater management model (SWMM) for urban stormwater hydrological simulation. This study also establishes a comprehensive urban stormwater resilience evaluation system and uses quantitative methods to unify the performances of scenarios under different rainfall return periods. Our analytical findings elucidate that the suitability of GI is predominantly concentrated in the northern and western areas of the study area, with the smallest suitable area observed for permeable pavements. Divergent GIs exhibit disparate performances, with rain gardens emerging as particularly efficacious. Importantly, the combination of multiple GIs yields a synergistic enhancement in resilience, underscoring the strategic advantage of adopting a diverse and integrated approach to GI implementation. This study facilitates a deeper understanding of urban stormwater resilience and assists in informed planning decisions for GI and sponge cities.

Funder

Northwest A&F University, China

Shaanxi Science and Technology Agency, China

Innovation and Entrepreneurship Training Plan for Chinese College Students

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3