Affiliation:
1. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract
The landing gear structure suffers from large loads during aircraft takeoff and landing, and an accurate prediction of landing gear performance is beneficial to ensure flight safety. Nevertheless, the landing gear performance prediction method based on machine learning has a strong reliance on the dataset, in which the feature dimension and data distribution will have a great impact on the prediction accuracy. To address these issues, a novel MCA-MLPSA is developed. First, an MCA (multiple correlation analysis) method is proposed to select key features. Second, a heterogeneous multilearner integration framework is proposed, which makes use of different base learners. Third, an MLPSA (multilayer perceptron with self-attention) model is proposed to adaptively capture the data distribution and adjust the weights of each base learner. Finally, the excellent prediction performance of the proposed MCA-MLPSA is validated by a series of experiments on the landing gear data.
Funder
the National Natural Science Foundation of China Key Support Project
the Fellowship of China Postdoctoral Science Foundation
the Fellowship of Heilongjiang Province Postdoctoral Science Foundation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献