A Distributed Method for Self-Calibration of Magnetoresistive Angular Position Sensor within a Servo System

Author:

Čeperković Vladimir,Rajović VladimirORCID,Prokin Milan

Abstract

Magnetoresistive angle position sensors are, beside Hall effect sensors, especially suitable for usage within servo systems due to their reliability, longevity, and resilience to unfavorable environmental conditions. The proposed distributed method for self-calibration of magnetoresistive angular position sensor uses the data collected during the highest allowed speed shaft movement for the identification of the measurement process model parameters. Data acquisition and initial data processing have been realized as a part of the control process of the servo system, whereas the identification of the model parameters is a service of an application server. The method of minimizing of the sum of algebraic distances of the sensor readings and the parametrized model is employed for the identification of parameters of linear compensation, whereas the average shaft rotation speed has been used as a high precision reference for the identification of parameters of harmonic compensation. The proposed method, in addition to a fast convergence, provides for the increase in measurement accuracy for an order of magnitude. Experimentally obtained measurement uncertainty was better than 0.5°, with the residual variance less than 0.02°, comparable to the sensor resolution.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

1. TLE5x09A16(D) Analog AMR/GMR Angle Sensors, Version 2.0,2018

2. TLE5014,2018

3. Advanced On-Chip Linearization in the A1335 Angle Sensor IC;Sirohiwala,2016

4. A method to calculate displacements as End of Line Calibration for AMR-based angular sensors

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single Buffered Angular Speed Measurement Method for Self-Calibration of Magnetoresistive Sensors;2023 12th Mediterranean Conference on Embedded Computing (MECO);2023-06-06

2. Double Buffered Angular Speed Measurement Method for Self-Calibration of Magnetoresistive Sensors;2023 12th Mediterranean Conference on Embedded Computing (MECO);2023-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3