Relating Bat Passage Rates to Wind Turbine Fatalities

Author:

Smallwood K. ShawnORCID,Bell Douglas A.

Abstract

Wind energy siting to minimize impacts to bats would benefit from impact predictions following pre-construction surveys, but whether pre- or even post-construction activity patterns can predict fatalities remains unknown. We tested whether bat passage rates through rotor-swept airspace differ between groups of wind turbines where bat fatalities were found and not found during next-morning dog searches for fatalities. Passage rates differed significantly and averaged four times higher where freshly killed bats were found in next-morning fatality searches. Rates of near misses and risky flight behaviors also differed significantly between groups of turbines where bats were found and not found, and rate of near misses averaged eight times higher where bat fatalities were found in next-morning searches. Hours of turbine operation averaged significantly higher, winds averaged more westerly, and the moon averaged more visible among turbines where and when bat fatalities were found. Although dogs found only one of four bats seen colliding with turbine blades, they found many more bat fatalities than did human-only searchers at the same wind projects, and our fatality estimates were considerably higher. Our rates of observed bat collisions, adjusted for the rates of unseen collisions, would predict four to seven times the fresh fatalities we found using dogs between two wind projects. Despite markedly improved carcass detection through use of dogs, best estimates of bat fatalities might still be biased low due to crippling bias and search radius bias.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference42 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3