The Efficient Application of an Impulse Source Wavemaker to CFD Simulations

Author:

Schmitt Pal,Windt Christian,Davidson Josh,Ringwood John VORCID,Whittaker Trevor

Abstract

Computational Fluid Dynamics (CFD) simulations, based on Reynolds-AveragedNavier–Stokes (RANS) models, are a useful tool for a wide range of coastal and offshore applications,providing a high fidelity representation of the underlying hydrodynamic processes. Generating inputwaves in the CFD simulation is performed by a Numerical Wavemaker (NWM), with a variety ofdifferent NWM methods existing for this task. While NWMs, based on impulse source methods, havebeen widely applied for wave generation in depth averaged, shallow water models, they have notseen the same level of adoption in the more general RANS-based CFD simulations, due to difficultiesin relating the required impulse source function to the resulting free surface elevation for non-shallowwater cases. This paper presents an implementation of an impulse source wavemaker, which is ableto self-calibrate the impulse source function to produce a desired wave series in deep or shallowwater at a specific point in time and space. Example applications are presented, for a NumericalWave Tank (NWT), based on the open-source CFD software OpenFOAM, for wave packets in deepand shallow water, highlighting the correct calibration of phase and amplitude. Furthermore, thesuitability for cases requiring very low reflection from NWT boundaries is demonstrated. Possibleissues in the use of the method are discussed, and guidance for accurate application is given.

Funder

Science Foundation Ireland

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3