On the Dimensions of Hermitian Subfield Subcodes from Higher-Degree Places

Author:

El Khalfaoui Sabira1ORCID,Nagy Gábor P.23ORCID

Affiliation:

1. Institut de Recherche Mathématique de Rennes-IRMAR-UMR 6625, University Rennes, F-35000 Rennes, France

2. Bolyai Institute, University of Szeged, Aradi Vértanúk tere 1, H-6720 Szeged, Hungary

3. HUN-REN-ELTE Geometric and Algebraic Combinatorics Research Group, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary

Abstract

The focus of our research is the examination of Hermitian curves over finite fields, specifically concentrating on places of degree three and their role in constructing Hermitian codes. We begin by studying the structure of the Riemann–Roch space associated with these degree-three places, aiming to determine essential characteristics such as the basis. The investigation then turns to Hermitian codes, where we analyze both functional and differential codes of degree-three places, focusing on their parameters and automorphisms. In addition, we explore the study of subfield subcodes and trace codes, determining their structure by giving lower bounds for their dimensions. This presents a complex problem in coding theory. Based on numerical experiments, we formulate a conjecture for the dimension of some subfield subcodes of Hermitian codes. Our comprehensive exploration seeks to deepen the understanding of Hermitian codes and their associated subfield subcodes related to degree-three places, thus contributing to the advancement of algebraic coding theory and code-based cryptography.

Funder

French National Research Agency

French government Investissements d’Avenir program

Quantum Information National Laboratory of Hungary

National Research, Development and Innovation Office

Publisher

MDPI AG

Reference22 articles.

1. Sendrier, N. (2002). Information, Coding and Mathematics: Proceedings of Workshop Honoring Prof. Bob McEliece on His 60th Birthday, Springer.

2. A distinguisher for high-rate McEliece cryptosystems;Faugere;IEEE Trans. Inf. Theory,2013

3. A public-key cryptosystem based on algebraic;McEliece;Coding Thv.,1978

4. Distinguisher-based attacks on public-key cryptosystems using Reed–Solomon codes;Couvreur;Des. Codes Cryptogr.,2014

5. Cryptanalysis of McEliece cryptosystem based on algebraic geometry codes and their subcodes;Couvreur;IEEE Trans. Inf. Theory,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3