Chip-Based Electronic System for Quantum Key Distribution

Author:

Zhang Siyuan1,Mao Wei2,Luo Shaobo3,Sun Shihai1

Affiliation:

1. School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen 518107, China

2. Hangzhou Research Institute, Xidian University, No. 8 Qiannong East Road, Hangzhou 710071, China

3. School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China

Abstract

Quantum Key Distribution (QKD) has garnered significant attention due to its unconditional security based on the fundamental principles of quantum mechanics. While QKD has been demonstrated by various groups and commercial QKD products are available, the development of a fully chip-based QKD system, aimed at reducing costs, size, and power consumption, remains a significant technological challenge. Most researchers focus on the optical aspects, leaving the integration of the electronic components largely unexplored. In this paper, we present the design of a fully integrated electrical control chip for QKD applications. The chip, fabricated using 28 nm CMOS technology, comprises five main modules: an ARM processor for digital signal processing, delay cells for timing synchronization, ADC for sampling analog signals from monitors, OPAMP for signal amplification, and DAC for generating the required voltage for phase or intensity modulators. According to the simulations, the minimum delay is 11ps, the open-loop gain of the operational amplifier is 86.2 dB, the sampling rate of the ADC reaches 50 MHz, and the DAC achieves a high rate of 100 MHz. To the best of our knowledge, this marks the first design and evaluation of a fully integrated driver chip for QKD, holding the potential to significantly enhance QKD system performance. Thus, we believe our work could inspire future investigations toward the development of more efficient and reliable QKD systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3