Abstract
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) in vitro. Previously, a lentivirus induction strategy of introducing Oct4, Sox2, Nanog and Lin28 (OSNL) into the iPSC process has been shown as a possible way to produce chicken iPSCs from chicken embryonic fibroblasts, but the induction efficiency of this method was found to be significantly limiting. In order to help resolve this efficiency obstacle, this study seeks to clarify the associated regulation mechanisms and optimizes the reprogramming strategy of chicken iPSCs. This study showed that glycolysis and the expression of glycolysis-related genes correlate with a more efficient reprogramming process. At the same time, the transcription factors Oct4, Sox2 and Nanog were found to activate the expression of glycolysis-related genes. In addition, we introduced two small-molecule inhibitors (2i-SP) as a “glycolysis activator” together with the OSNL cocktail, and found that this significantly improved the induction efficiency of the iPSC process. As such, the study identifies direct molecular connections between core pluripotency factors and glycolysis during the chicken iPSC induction process and, with its results, provides a theoretical basis and technical support for chicken somatic reprogramming.
Funder
National Natural Science Foundation of China
National Key R & D plan of China
Subject
General Veterinary,Animal Science and Zoology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献