Quantifying the Spatial Distribution Pattern of Soil Diversity in Southern Xinjiang and Its Influencing Factors

Author:

Luo Junteng12,Fan Yanmin12,Wu Hongqi12,Cheng Junhui12,Yang Rui12,Zheng Kai12ORCID

Affiliation:

1. College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China

2. Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China

Abstract

Soil diversity plays an important role in maintaining ecological balance and ensuring the sustainability of the land. Xinjiang is a typical arid and semi-arid region of China, and the study of Xinjiang soils is significant for understanding soil properties in all such environments. This study applied the moving window technique and the species–area curve model from ecology to establish optimal analysis windows, calculate landscape pattern indices, and reveal soil distribution characteristics in Southern Xinjiang. Additionally, we used geographic detectors to identify the primary influencing factors in different geomorphic regions. The results indicate a positive correlation between soil richness and area in the Southern Xinjiang region. The Tarim Basin, despite being the largest area, shows the lowest diversity and evenness indices. Overall, mountainous areas have higher soil evenness when compared to basins. In terms of natural factors, temperature, precipitation, and topography play a crucial role in the variation of soil diversity in mountainous areas, while parent material has a greater influence in the basin regions. The characteristics of soil diversity vary by region and are influenced by the interactive effects of various natural factors. However, the impact of human activities also requires consideration. The low evenness poses a greater challenge for soil restoration in the basin regions. Soil conservation efforts in arid regions are of paramount importance. The research findings can provide valuable insights for the development of sustainable agriculture, soil conservation, and for addressing climate change challenges in arid regions.

Funder

This research was funded by the National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3