Human Movement Recognition Based on 3D Point Cloud Spatiotemporal Information from Millimeter-Wave Radar

Author:

Dang Xiaochao1,Jin Peng1,Hao Zhanjun1ORCID,Ke Wenze1,Deng Han1,Wang Li1

Affiliation:

1. College of Computer Science & Engineering, Northwest Normal University, Lanzhou 730070, China

Abstract

Human movement recognition is the use of perceptual technology to collect some of the limb or body movements presented. This practice involves the use of wireless signals, processing, and classification to identify some of the regular movements of the human body. It has a wide range of application prospects, including in intelligent pensions, remote health monitoring, and child supervision. Among the traditional human movement recognition methods, the widely used ones are video image-based recognition technology and Wi-Fi-based recognition technology. However, in some dim and imperfect weather environments, it is not easy to maintain a high performance and recognition rate for human movement recognition using video images. There is the problem of a low recognition degree for Wi-Fi recognition of human movement in the case of a complex environment. Most of the previous research on human movement recognition is based on LiDAR perception technology. LiDAR scanning using a three-dimensional static point cloud can only present the point cloud characteristics of static objects; it struggles to reflect all the characteristics of moving objects. In addition, due to its consideration of privacy and security issues, the dynamic millimeter-wave radar point cloud used in the previous study on the existing problems of human body movement recognition performance is better, with the recognition of human movement characteristics in non-line-of-sight situations as well as better protection of people’s privacy. In this paper, we propose a human motion feature recognition system (PNHM) based on spatiotemporal information of the 3D point cloud of millimeter-wave radar, design a neural network based on the network PointNet++ in order to effectively recognize human motion features, and study four human motions based on the threshold method. The data set of the four movements of the human body at two angles in two experimental environments was constructed. This paper compares four standard mainstream 3D point cloud human action recognition models for the system. The experimental results show that the recognition accuracy of the human body’s when walking upright can reach 94%, the recognition accuracy when moving from squatting to standing can reach 84%, that when moving from standing to sitting can reach 87%, and the recognition accuracy of falling can reach 93%.

Funder

The National Natural Science Foundation of China

the Industrial Support Foundations of Gansu

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3