Improved YOLOv5 Based on Multi-Strategy Integration for Multi-Category Wind Turbine Surface Defect Detection

Author:

Lei Mingwei1ORCID,Wang Xingfen2ORCID,Wang Meihua1,Cheng Yitao1

Affiliation:

1. School of Computer, Beijing Information Science and Technology University, Beijing 102206, China

2. Institute of Business Intelligence, Beijing Information Science and Technology University, Beijing 102206, China

Abstract

Wind energy is a renewable resource with abundant reserves, and its sustainable development and utilization are crucial. The components of wind turbines, particularly the blades and various surfaces, require meticulous defect detection and maintenance due to their significance. The operational status of wind turbine generators directly impacts the efficiency and safe operation of wind farms. Traditional surface defect detection methods for wind turbines often involve manual operations, which suffer from issues such as high subjectivity, elevated risks, low accuracy, and inefficiency. The emergence of computer vision technologies based on deep learning has provided a novel approach to surface defect detection in wind turbines. However, existing datasets designed for wind turbine surface defects exhibit overall category scarcity and an imbalance in samples between categories. The algorithms designed face challenges, with low detection rates for small samples. Hence, this study first constructs a benchmark dataset for wind turbine surface defects comprising seven categories that encompass all common surface defects. Simultaneously, a wind turbine surface defect detection algorithm based on improved YOLOv5 is designed. Initially, a multi-scale copy-paste data augmentation method is proposed, introducing scale factors to randomly resize the bounding boxes before copy-pasting. This alleviates sample imbalances and significantly enhances the algorithm’s detection capabilities for targets of different sizes. Subsequently, a dynamic label assignment strategy based on the Hungarian algorithm is introduced that calculates the matching costs by weighing different losses, enhancing the network’s ability to learn positive and negative samples. To address overfitting and misrecognition resulting from strong data augmentation, a two-stage progressive training method is proposed, aiding the model’s natural convergence and improving generalization performance. Furthermore, a multi-scenario negative-sample-guided learning method is introduced that involves incorporating unlabeled background images from various scenarios into training, guiding the model to learn negative samples and reducing misrecognition. Finally, slicing-aided hyper inference is introduced, facilitating large-scale inference for wind turbine surface defects in actual industrial scenarios. The improved algorithm demonstrates a 3.1% increase in the mean average precision (mAP) on the custom dataset, achieving 95.7% accuracy in mAP_50 (the IoU threshold is half of the mAP). Notably, the mAPs for small, medium, and large targets increase by 18.6%, 16.4%, and 6.8%, respectively. The experimental results indicate that the enhanced algorithm exhibits high detection accuracy, providing a new and more efficient solution for the field of wind turbine surface defect detection.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A multi-strategy integrated improved YOLOv5 model and its application in target detection;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3