Pore-Scale Modeling of Methane Hydrate Dissociation Using a Multiphase Micro-Continuum Framework

Author:

Liu Zhiying1,Xu Qianghui2ORCID,Yang Junyu3,Shi Lin1

Affiliation:

1. Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China

2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

3. Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK

Abstract

The development of methane hydrate extraction technology remains constrained due to the limited physical understanding of hydrate dissociation dynamics. While recent breakthroughs in pore-scale visualization techniques offer intuitive insights into the dissociation process, obtaining a profound grasp of the underlying mechanisms necessitates more than mere experimental observations. In this research, we introduce a two-phase micro-continuum model that facilitates the numerical simulation of methane hydrate dissociation at both single- and multiscale levels. We employed this numerical model to simulate microfluidic experiments and determined the kinetic parameters of methane hydrate dissociation based on experimental data under various dissociation scenarios. The simulations, once calibrated, correspond closely to experimental results. By comprehensively comparing the simulated results with experimental data, the rate constant and the effective diffusion coefficient were reliably determined to be kd = 1.5 × 108 kmol2/(J·s·m2) and Dl = 0.8 × 10−7 m2/s, respectively. Notably, the multiscale model not only matches the precision of the single-scale model but also presents considerable promise for streamlining the simulation of hydrate dissociation across multiscale porous media. Moreover, we contrast hydrate dissociation under isothermal versus adiabatic conditions, wherein the dissociation rate is significantly reduced under adiabatic conditions due to the shifted thermodynamic condition. This comparison highlights the disparities between microfluidic experiments and real-world extraction environments.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference48 articles.

1. Gas hydrates: Review of physical/chemical properties;Sloan;Energy Fuels,1998

2. Global distribution of methane hydrate in ocean sediment;Klauda;Energy Fuels,2005

3. Methane hydrates potential as a future energy source;Lee;Fuel Process. Technol.,2001

4. The status of natural gas hydrate research in China: A review;Song;Renew. Sustain. Energy Rev.,2014

5. Gas hydrates in sustainable chemistry;Hassanpouryouzband;Chem. Soc. Rev.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3