Impact of Uninsulated Slab-on-Grade and Masonry Walls on Residential Building Overheating

Author:

Kuczyński Tadeusz1ORCID,Staszczuk Anna2ORCID

Affiliation:

1. Institute of Environmental Engineering, University of Zielona Góra, Prof. Z. Szafrana Str. 15, 65-516 Zielona Góra, Poland

2. Institute of Civil Engineering, University of Zielona Góra, Prof. Z. Szafrana Str. 1, 65-516 Zielona Góra, Poland

Abstract

Studies of the effects of removing underfloor insulation and increasing the thermal capacity of building walls are currently found almost exclusively in existing vernacular architecture and rammed-earth buildings, mostly in countries with warm climates. This paper proposes the combined use of these two measures to reduce the risk of overheating in a detached single-family house in a temperate climate during the summer. Experimental studies conducted during the largest heat wave on record in the summer of 2019 showed that peak daytime temperatures decreased by 5.2 °C to 7.1 °C, and peak nighttime temperatures decreased by 4.7 °C to 6.8 °C. Simulation studies taking into account occupant heat showed that the proposed passive methods could, under the IPCC 8.5 scenario, eliminate the need for mechanical cooling in a detached single-family house in the temperate climate of Central and Eastern Europe by 2100. The actual heating energy consumption for the building with an uninsulated floor and increased wall heat capacity was 5.5 kWh/m2 higher than for the reference building, indicating that it can be a near-zero energy building. The proposed concept is in line with the new approach to the energy design of buildings, which should not be limited to reducing thermal energy demand, but should also respond to the needs arising from global warming.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3