Improving Wind Power Generation Forecasts: A Hybrid ANN-Clustering-PSO Approach

Author:

Finamore Antonella R.1,Calderaro Vito1ORCID,Galdi Vincenzo1ORCID,Graber Giuseppe1ORCID,Ippolito Lucio1,Conio Gaspare2

Affiliation:

1. Department of Industrial Engineering, University of Salerno, 84084 Salerno, Italy

2. EOS Consulting SpA, 00144 Rome, Italy

Abstract

This study introduces a novel hybrid forecasting model for wind power generation. It integrates Artificial Neural Networks, data clustering, and Particle Swarm Optimization algorithms. The methodology employs a systematic framework: initial clustering of weather data via the k-means algorithm, followed by Pearson’s analysis to pinpoint pivotal elements in each cluster. Subsequently, a Multi-Layer Perceptron Artificial Neural Network undergoes training with a Particle Swarm Optimization algorithm, enhancing convergence and minimizing prediction discrepancies. An important focus of this study is to streamline wind forecasting. By judiciously utilizing only sixteen observation points near a wind farm plant, in contrast to the complex global numerical weather prediction systems employed by the European Center Medium Weather Forecast, which rely on thousands of data points, this approach not only enhances forecast accuracy but also significantly simplifies the modeling process. Validation is performed using data from the Italian National Meteorological Centre. Comparative assessments against both a persistence model and actual wind farm data from Southern Italy substantiate the superior performance of the proposed hybrid model. Specifically, the clustered Particle Swarm Optimization-Artificial Neural Network-Wind Forecasting Method demonstrates a noteworthy improvement, with a reduction in mean absolute percentage error of up to 59.47% and a decrease in root mean square error of up to 52.27% when compared to the persistence model.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference56 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3