Optimal Allocation and Energy Management of Units in Distribution Networks with Multiple Renewable Energy Sources and Battery Storage Based on Computational Intelligence

Author:

Barukčić Marinko1ORCID,Kurtović Goran1,Benšić Tin1ORCID,Jerković Štil Vedrana1ORCID

Affiliation:

1. Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, J. J. Strossmayer University of Osijek, Kneza Trpimira 2B, HR-31000 Osijek, Croatia

Abstract

The paper deals with an optimization problem in an electricity distribution network with different types of distributed generation and a battery storage system in terms of a smart grid concept. The optimization problem considers two objectives, namely, the annual energy losses and the exchange of energy with the higher-level power grid. The decision variables of the problem are the allocation of the different distributed generation units and the battery storage system, the annual power profiles of the controllable distributed generation and the battery storage system, and the power factor profiles of the controllable and noncontrollable distributed generation. All decision variables are solved simultaneously in a single optimization problem. The variable load shapes of the grid consumers and the profiles of the photovoltaic and wind power systems are considered in the study. All data are observed at the annual level with hourly resolution. The problem solving method uses computational intelligence techniques, namely, metaheuristic optimization methods and artificial neural networks. The study proposes a framework for optimizing the decision variables in the planning phase of distributed generation and battery storage, and for controlling the variable power and power factor profiles based on an artificial neural network in the implementation phase. The optimization problem is solved with a power system simulation program and a metaheuristic optimizer in cosimulation synergy. The three cases of distributed generation and battery storage are considered simultaneously. The proposed method is applied to the test grid operator IEEE with 37 buses, and reductions in annual energy losses and energy exchange are obtained in the ranges 34–86% and 41–99%, respectively.

Funder

Croatian Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3