Hydrogen-Rich Syngas Production via Dry and Steam Reforming of Methane in Simulated Producer Gas over ZSM-5-Supported Trimetallic Catalysts

Author:

Iminabo John Tamunosaki12,Iminabo Misel12,Yip Alex C. K.1ORCID,Pang Shusheng1

Affiliation:

1. Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8041, New Zealand

2. Department of Chemical/Petrochemical Engineering, Rivers State University, Port Harcourt PMB 5080, Nigeria

Abstract

This study investigated the production of hydrogen-rich syngas from renewable sources using durable and efficient catalysts. Specifically, the research focused on steam methane reforming (SRM) and dry methane reforming (DRM) of simulated producer gas from biomass steam gasification in a fluidized bed reactor. The catalysts tested are ZSM-5-supported nickel-iron-cobalt-based trimetallic catalysts in different ratios, which were prepared via the wet impregnation method. Synthesized catalysts were characterized using XRD, BET, H2-TPR, and SEM techniques. The results of the SRM with the simulated producer gas showed that the 20%Ni-20%Fe-10%Co/ZSM-5 trimetallic catalyst, at a gas hourly space velocity (GHSV) of 12 L·h−1·g−1 and reaction temperature of 800 °C, achieved the highest CH4 conversion (74.8%) and highest H2 yield (65.59%) with CO2 conversion (36.05%). Comparing the performance of the SRM and DRM of the simulated producer gas with the 20%Ni-20%Fe-10%Co/ZSM5 at a GHSV of 36 L·h−1·g−1 and 800 °C, they achieved a CH4 conversion of 67.18% and 64.43%, a CO2 conversion of 43.01% and 52.1%, and a H2 yield of 55.49% and 42.02%, respectively. This trimetallic catalyst demonstrated effective inhibition of carbon formation and sintering, with only 2.6 wt.% carbon deposition observed from the thermo-gravimetric analysis of the used catalyst from the SRM of the simulated producer gas, thus promoting the potential of the ZSM-5-supported trimetallic catalysts in methane reforming.

Funder

Wood Technology Research Centre

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference58 articles.

1. Comparative numerical analysis for an efficient hydrogen production via a steam methane reforming with a packed-bed reactor, a membrane reactor, and a sorption-enhanced membrane reactor;Lee;Energy Convers. Manag.,2020

2. Mohamedali, M., Henni, A., and Ibrahim, H. (2017). Hydrogen Production Technologies, Scrivener Publishing LLC.

3. Application of biomass to hydrogen and syngas production;Peres;Chem. Eng. Trans.,2013

4. Constraints of fossil fuels depletion on global warming projections;Chiari;Energy Policy,2011

5. Hydrogen-enriched producer gas production and chemical conversion to usable gas product through biomass gasification using NiO nanoparticles dispersed on SBA-15;Lu;J. Nanosci. Nanotechnol.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3