Enhancing Feature Selection Optimization for COVID-19 Microarray Data

Author:

Krishanthi Gayani1,Jayetileke Harshanie1ORCID,Wu Jinran2ORCID,Liu Chanjuan3ORCID,Wang You-Gan2ORCID

Affiliation:

1. Department of Mathematics, University of Ruhuna, Matara 81000, Sri Lanka

2. Institute for Learning Sciences & Teacher Education, Australian Catholic University, Brisbane, QLD 4001, Australia

3. School of Business Administration and Customs, Shanghai Customs College, Shanghai 201204, China

Abstract

The utilization of gene selection techniques is crucial when dealing with extensive datasets containing limited cases and numerous genes, as they enhance the learning processes and improve overall outcomes. In this research, we introduce a hybrid method that combines the binary reptile search algorithm (BRSA) with the LASSO regression method to effectively filter and reduce the dimensionality of a gene expression dataset. Our primary objective was to pinpoint genes associated with COVID-19 by examining the GSE149273 dataset, which focuses on respiratory viral (RV) infections in individuals with asthma. This dataset suggested a potential increase in ACE2 expression, a critical receptor for the SARS-CoV-2 virus, along with the activation of cytokine pathways linked to COVID-19. Our proposed BRSA method successfully identified six significant genes, including ACE2, IFIT5, and TRIM14, that are closely related to COVID-19, achieving an impressive maximum classification accuracy of 87.22%. By conducting a comparative analysis against four existing binary feature selection algorithms, we demonstrated the effectiveness of our hybrid approach in reducing the dimensionality of features, while maintaining a high classification accuracy. As a result, our hybrid approach shows great promise for identifying COVID-19-related genes and could be an invaluable tool for other studies dealing with very large gene expression datasets.

Funder

Australian Research Council project

Ministry of Education of Humanities and Social Science project

Chunhui Program Collaborative Scientific Research Project

2022 Shanghai Chenguang Scholars Program

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3