On the Automatic Detection and Classification of Skin Cancer Using Deep Transfer Learning

Author:

Fraiwan MohammadORCID,Faouri EsraaORCID

Abstract

Skin cancer (melanoma and non-melanoma) is one of the most common cancer types and leads to hundreds of thousands of yearly deaths worldwide. It manifests itself through abnormal growth of skin cells. Early diagnosis drastically increases the chances of recovery. Moreover, it may render surgical, radiographic, or chemical therapies unnecessary or lessen their overall usage. Thus, healthcare costs can be reduced. The process of diagnosing skin cancer starts with dermoscopy, which inspects the general shape, size, and color characteristics of skin lesions, and suspected lesions undergo further sampling and lab tests for confirmation. Image-based diagnosis has undergone great advances recently due to the rise of deep learning artificial intelligence. The work in this paper examines the applicability of raw deep transfer learning in classifying images of skin lesions into seven possible categories. Using the HAM1000 dataset of dermoscopy images, a system that accepts these images as input without explicit feature extraction or preprocessing was developed using 13 deep transfer learning models. Extensive evaluation revealed the advantages and shortcomings of such a method. Although some cancer types were correctly classified with high accuracy, the imbalance of the dataset, the small number of images in some categories, and the large number of classes reduced the best overall accuracy to 82.9%.

Funder

Jordan University of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3