Modelling of Land Use/Cover and LST Variations by Using GIS and Remote Sensing: A Case Study of the Northern Pakhtunkhwa Mountainous Region, Pakistan

Author:

Rehman Akhtar,Qin Jun,Shafi Sedra,Khan Muhammad SadiqORCID,Ullah Siddique,Ahmad Khalid,Rehman Nazir Ur,Faheem Muhammad

Abstract

Alteration in Land Use/Cover (LULC) considered a major challenge over the recent decades, as it plays an important role in diminishing biodiversity, altering the macro and microclimate. Therefore, the current study was designed to examine the past 30 years (1987–2017) changes in LULC and Land Surface Temperature (LST) and also simulated for next 30 years (2047). The LULC maps were developed based on maximum probability classification while the LST was retrieved from Landsat thermal bands and Radiative Transfer Equation (RTE) method for the respective years. Different approaches were used, such as Weighted Evidence (WE), Cellular Automata (CA) and regression prediction model for the year 2047. Resultantly, the LULC classification showed increasing trend in built-up and bare soil classes (13 km2 and 89 km2), and the decreasing trend in vegetation class (−144 km2) in the study area. In the next 30 years, the built-up and bare soil classes would further rise with same speed (25 km2 and 36.53 km2), and the vegetation class would further decline (−147 km2) until 2047. Similarly for LST, the temperature range for higher classes (27 -< 30 °C) increased by about 140 km2 during 1987–2017, which would further enlarge (409 km2) until 2047. The lower LST range (15 °C to <21 °C) showed a decreasing trend (−54.94 km2) and would further decline to (−20 km2) until 2047 if it remained at the same speed. Prospective findings will be helpful for land use planners, climatologists and other scientists in reducing the increasing LST associated with LULC changes.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3