Land Cover Mapping in Cloud-Prone Tropical Areas Using Sentinel-2 Data: Integrating Spectral Features with Ndvi Temporal Dynamics

Author:

Huang Chong,Zhang ChenchenORCID,He Yun,Liu Qingsheng,Li He,Su Fenzhen,Liu Gaohuan,Bridhikitti Arika

Abstract

Accurate remote sensing and mapping of land cover in the tropics remain difficult tasks since data gaps and a heterogenic landscape make it challenging to perform land cover classification. In this paper, we proposed a multi-feature classification method to integrate temporal statistical features with spectral and textural features. This method is designed to improve the accuracy of land cover classification in cloud-prone tropical regions. Sentinel-2 images were used to construct an NDVI stack for a time-series statistical analysis to characterize the temporal variance of land cover. Two statistical indices were calculated and used to represent the variation in annual vegetation. These indices included the mean (NDVI_mean) and coefficient of variation (NDVI_cv) for the NDVI time series. The temporal statistical features were then integrated with spectral and textural features extracted from high-quality Sentinel-2 imagery for Random Forest classification. The performance and contribution of different combinations were assessed based on their classification accuracies. Our results show that the time-series statistical analysis is an effective way to represent land cover category information contained in annual NDVI variance. The method uses clear pixels from dense low-quality images to obtain the NDVI statistical characteristics, thus, to reduce the influence of random factors such as weather conditions on single-date image. The addition of NDVI_mean and NDVI_cv can improve the separability among most types of land cover. The overall accuracy and the kappa coefficient reached values of 0.8913 and 0.8514 when NDVI_mean and NDVI_cv were integrated. Furthermore, the time-series statistical analysis has less stringent requirements regarding image quality and features a high computational efficiency, which shows its great potential to improve the overall accuracy of land cover classification at regional scales in cloud-prone tropical regions.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3