Integrity Monitoring for Horizontal RTK Positioning: New Weighting Model and Overbounding CDF in Open-Sky and Suburban Scenarios

Author:

Wang KanORCID,El-Mowafy AhmedORCID,Rizos ChrisORCID,Wang JinlingORCID

Abstract

Integrity monitoring is an essential task for ensuring the safety of positioning services. Under a selected probability of hazardous misleading information, the protection levels (PLs) are computed according to a considered threat model to bound the positioning errors. A warning message is sent to users when the PL exceeds a pre-set alert limit (AL). In the short-baseline real-time relative kinematic positioning, the spatially correlated errors, such as the the orbital errors and the atmospheric delays are significantly reduced. However, the remaining atmospheric residuals and the multipath that are not considered in the observation model could directly bias the positioning results. In this contribution, these biases are analysed with the focus put on the multipath effects in different measurement environments. A new observation weighting model considering both the elevation angle and the signal-to-noise ratios is developed and their impacts on the positional results are investigated. The coefficients of the proposed weighting model are determined for the open-sky and the suburban scenarios with the positional benefits maximised. Next, the overbounding excess-mass cumulative distribution functions (EMCs) are searched on the between-receiver level for the weighted phase and code observations in these two scenarios. Based on the mean and standard deviations of these EMCs, horizontal protection levels (HPLs) are computed for the ambiguity-fixed solutions of real experiments. The HPLs are compared with the horizontal positioning errors (HPEs) and the horizontal ALs (HALs). Using the sequential exclusion algorithm developed for the ambiguity resolution in this contribution, the full ambiguity resolution can be achieved in around 100% and 95% of the time for the open-sky and the suburban scenarios, respectively. The corresponding HPLs of the ambiguity-fixed solutions are at the sub-dm to dm-level for both scenarios, and all the valid ambiguity-fixed HPLs are below a HAL of 0.5 m. For the suburban scenario with more complicated multipath environments, the HPLs increase by considering extra biases to account for multipath under a certain elevation threshold. In complicated multipath environments, when this elevation threshold is set to 30 degrees, the availability of the ambiguity-fixed solutions could decrease to below 50% for applications requiring HAL as low as 0.1 m.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3