Assessment of an Automated Calibration of the SEBAL Algorithm to Estimate Dry-Season Surface-Energy Partitioning in a Forest–Savanna Transition in Brazil

Author:

Laipelt Leonardo,Ruhoff Anderson LuisORCID,Fleischmann Ayan Santos,Kayser Rafael Henrique Bloedow,Kich Elisa de Mello,da Rocha Humberto Ribeiro,Neale Christopher Michael Usher

Abstract

Evapotranspiration ( E T ) provides a strong connection between surface energy and hydrological cycles. Advancements in remote sensing techniques have increased our understanding of energy and terrestrial water balances as well as the interaction between surface and atmosphere over large areas. In this study, we computed surface energy fluxes using the Surface Energy Balance Algorithm for Land (SEBAL) algorithm and a simplified adaptation of the CIMEC (Calibration using Inverse Modeling at Extreme Conditions) process for automated endmember selection. Our main purpose was to assess and compare the accuracy of the automated calibration of the SEBAL algorithm using two different sources of meteorological input data (ground measurements from an eddy covariance flux tower and reanalysis data from Modern-Era Reanalysis for Research and Applications version 2 (MERRA-2)) to estimate the dry season partitioning of surface energy and water fluxes in a transitional area between tropical rainforest and savanna. The area is located in Brazil and is subject to deforestation and cropland expansion. The SEBAL estimates were validated using eddy covariance measurements (2004 to 2006) from the Large-Scale Biosphere-Atmosphere Experiment in the Amazon (LBA) at the Bananal Javaés (JAV) site. Results indicated a high accuracy for daily ET, using both ground measurements and MERRA-2 reanalysis, suggesting a low sensitivity to meteorological inputs. For daily ET estimates, we found a root mean square error (RMSE) of 0.35 mm day−1 for both observed and reanalysis meteorology using accurate quantiles for endmembers selection, yielding an error lower than 9% (RMSE compared to the average daily ET). Overall, the ET rates in forest areas were 4.2 mm day−1, while in grassland/pasture and agricultural areas we found average rates between 2.0 and 3.2 mm day−1, with significant changes in energy partitioning according to land cover. Thus, results are promising for the use of reanalysis data to estimate regional scale patterns of sensible heat (H) and latent heat (LE) fluxes, especially in areas subject to deforestation.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3