Vegetation Fraction Images Derived from PROBA-V Data for Rapid Assessment of Annual Croplands in Brazil

Author:

Arai Egidio,Eyji Sano Edson,Dutra Andeise CerqueiraORCID,Cassol Henrique Luis GodinhoORCID,Hoffmann Tânia Beatriz,Shimabukuro Yosio Edemir

Abstract

This paper presents a new method for rapid assessment of the extent of annual croplands in Brazil. The proposed method applies a linear spectral mixing model (LSMM) to PROBA-V time series images to derive vegetation, soil, and shade fraction images for regional analysis. We used S10-TOC (10 days synthesis, 1 km spatial resolution, and top-of-canopy) products for Brazil and S5-TOC (five days synthesis, 100 m spatial resolution, and top-of-canopy) products for Mato Grosso State (Brazilian Legal Amazon). Using the time series of the vegetation fraction images of the whole year (2015 in this case), only one mosaic composed with maximum values of vegetation fraction was generated, allowing detecting and mapping semi-automatically the areas occupied by annual crops during the year. The results (100 m spatial resolution map) for the Mato Grosso State were compared with existing global datasets (Finer Resolution Observation and Monitoring—Global Land Cover (FROM-GLC) and Global Food Security—Support Analyses Data (GFSAD30)). Visually those maps present a good agreement, but the area estimated are not comparable since the agricultural class definition are different for those maps. In addition, we found 11.8 million ha of agricultural areas in the entire Brazilian territory. The area estimation for the Mato Grosso State was 3.4 million ha for 1 km dataset and 5.3 million ha for 100 m dataset. This difference is due to the spatial resolution of the PROBA-V datasets used. A coefficient of determination of 0.82 was found between PROBA-V 100 m and Landsat-8 OLI area estimations for the Mato Grosso State. Therefore, the proposed method is suitable for detecting and mapping annual croplands distribution operationally using PROBA-V datasets for regional analysis.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3