Generative Adversarial Networks Based on Collaborative Learning and Attention Mechanism for Hyperspectral Image Classification

Author:

Feng Jie,Feng Xueliang,Chen Jiantong,Cao Xianghai,Zhang XiangrongORCID,Jiao Licheng,Yu Tao

Abstract

Classifying hyperspectral images (HSIs) with limited samples is a challenging issue. The generative adversarial network (GAN) is a promising technique to mitigate the small sample size problem. GAN can generate samples by the competition between a generator and a discriminator. However, it is difficult to generate high-quality samples for HSIs with complex spatial–spectral distribution, which may further degrade the performance of the discriminator. To address this problem, a symmetric convolutional GAN based on collaborative learning and attention mechanism (CA-GAN) is proposed. In CA-GAN, the generator and the discriminator not only compete but also collaborate. The shallow to deep features of real multiclass samples in the discriminator assist the sample generation in the generator. In the generator, a joint spatial–spectral hard attention module is devised by defining a dynamic activation function based on a multi-branch convolutional network. It impels the distribution of generated samples to approximate the distribution of real HSIs both in spectral and spatial dimensions, and it discards misleading and confounding information. In the discriminator, a convolutional LSTM layer is merged to extract spatial contextual features and capture long-term spectral dependencies simultaneously. Finally, the classification performance of the discriminator is improved by enforcing competitive and collaborative learning between the discriminator and generator. Experiments on HSI datasets show that CA-GAN obtains satisfactory classification results compared with advanced methods, especially when the number of training samples is limited.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3