Phosphate-Catalyzed Succinimide Formation from Asp Residues: A Computational Study of the Mechanism

Author:

Kirikoshi Ryota,Manabe Noriyoshi,Takahashi Ohgi

Abstract

Aspartic acid (Asp) residues in proteins and peptides are prone to the non-enzymatic reactions that give biologically uncommon l-β-Asp, d-Asp, and d-β-Asp residues via the cyclic succinimide intermediate (aminosuccinyl residue, Suc). These abnormal Asp residues are known to have relevance to aging and pathologies. Despite being non-enzymatic, the Suc formation is thought to require a catalyst under physiological conditions. In this study, we computationally investigated the mechanism of the Suc formation from Asp residues that were catalyzed by the dihydrogen phosphate ion, H2PO4−. We used Ac–l-Asp–NHMe (Ac = acetyl, NHMe = methylamino) as a model compound. The H2PO4− ion (as a catalyst) and two explicit water molecules (as solvent molecules stabilizing the negative charge) were included in the calculations. All of the calculations were performed by density functional theory with the B3LYP functional. We revealed a phosphate-catalyzed two-step mechanism (cyclization–dehydration) of the Suc formation, where the first step is predicted to be rate-determining. In both steps, the reaction involved a proton relay mediated by the H2PO4− ion. The calculated activation barrier for this mechanism (100.3 kJ mol−1) is in reasonable agreement with an experimental activation energy (107 kJ mol−1) for the Suc formation from an Asp-containing peptide in a phosphate buffer, supporting the catalytic mechanism of the H2PO4− ion that is revealed in this study.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3