Microservices in Web Objects Enabled IoT Environment for Enhancing Reusability

Author:

Jarwar MuhammadORCID,Kibria MuhammadORCID,Ali SajjadORCID,Chong Ilyoung

Abstract

In the ubiquitous Internet of Things (IoT) environment, reusing objects instead of creating new one has become important in academics and industries. The situation becomes complex due to the availability of a huge number of connected IoT objects, and each individual service creates a new object instead of reusing the existing one to fulfill a requirement. A well-standard mechanism not only improves the reusability of objects but also improves service modularity and extensibility, and reduces cost. Web Objects enabled IoT environment applies the principle of reusability of objects in multiple IoT application domains through central objects repository and microservices. To reuse objects with microservices and to maintain a relationship with them, this study presents an architecture of Web of Objects platform. In the case of a similar request for an object, the already instantiated object that exists in the same or from other domain can be reused. Reuse of objects through microservices avoids duplications, and reduces time to search and instantiate them from their registries. Further, this article presents an algorithm for microservices and related objects discovery that considers the reusability of objects through the central objects repository. To support the reusability of objects, the necessary algorithm for objects matching is also presented. To realize the reusability of objects in Web Objects enabled IoT environment, a prototype has been designed and implemented based on a use case scenario. Finally, the results of the prototype have been analyzed and discussed to validate the proposed approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference45 articles.

1. oneM2M Is the Global Standards Initiative for Machine to Machine Communications and the Internet of Thingshttp://www.onem2m.org/

2. IoT Platforms: Vertically versus Horizontally Layered Architecture | Simfony Mobilehttp://simfonymobile.com/blog/IoT_Platforms_Vertically_versus_Horizontally_layered_architecture/

3. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications

4. Functional Framework of Web of Objectshttp://www.itu.int/rec/T-REC-Y.4452

5. The 10 Most Popular Internet of Things Applications Right Nowhttps://iot-analytics.com/10-internet-of-things-applications/

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3