A New Model of RGB-D Camera Calibration Based On 3D Control Field

Author:

Zhang ,Huang ,Zhao

Abstract

With extensive application of RGB-D cameras in robotics, computer vision, and many other fields, accurate calibration becomes more and more critical to the sensors. However, most existing models for calibrating depth and the relative pose between a depth camera and an RGB camera are not universally applicable to many different kinds of RGB-D cameras. In this paper, by using the collinear equation and space resection of photogrammetry, we present a new model to correct the depth and calibrate the relative pose between depth and RGB cameras based on a 3D control field. We establish a rigorous relationship model between the two cameras; then, we optimize the relative parameters of two cameras by least-squares iteration. For depth correction, based on the extrinsic parameters related to object space, the reference depths are calculated by using a collinear equation. Then, we calibrate the depth measurements with consideration of the distortion of pixels in depth images. We apply Kinect-2 to verify the calibration parameters by registering depth and color images. We test the effect of depth correction based on 3D reconstruction. Compared to the registration results from a state-of-the-art calibration model, the registration results obtained with our calibration parameters improve dramatically. Likewise, the performances of 3D reconstruction demonstrate obvious improvements after depth correction.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3