A Neural-Network-Based Approach to Chinese–Uyghur Organization Name Translation

Author:

Wumaier AishanORCID,Xu Cuiyun,Kadeer Zaokere,Liu Wenqi,Wang Yingbo,Haierla Xireaili,Maimaiti Maihemuti,Tian ShengWei,Saimaiti Alimu

Abstract

The recognition and translation of organization names (ONs) is challenging due to the complex structures and high variability involved. ONs consist not only of common generic words but also names, rare words, abbreviations and business and industry jargon. ONs are a sub-class of named entity (NE) phrases, which convey key information in text. As such, the correct translation of ONs is critical for machine translation and cross-lingual information retrieval. The existing Chinese–Uyghur neural machine translation systems have performed poorly when applied to ON translation tasks. As there are no publicly available Chinese–Uyghur ON translation corpora, an ON translation corpus is developed here, which includes 191,641 ON translation pairs. A word segmentation approach involving characterization, tagged characterization, byte pair encoding (BPE) and syllabification is proposed here for ON translation tasks. A recurrent neural network (RNN) attention framework and transformer are adapted here for ON translation tasks with different sequence granularities. The experimental results indicate that the transformer model not only outperforms the RNN attention model but also benefits from the proposed word segmentation approach. In addition, a Chinese–Uyghur ON translation system is developed here to automatically generate new translation pairs. This work significantly improves Chinese–Uyghur ON translation and can be applied to improve Chinese–Uyghur machine translation and cross-lingual information retrieval. It can also easily be extended to other agglutinative languages.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Information Systems

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3