Experimentation Environments for Data Center Routing Protocols: A Comprehensive Review

Author:

Alberro LeonardoORCID,Castro AlbertoORCID,Grampin EduardoORCID

Abstract

The Internet architecture has been undergoing a significant refactoring, where the past preeminence of transit providers has been replaced by content providers, which have a ubiquitous presence throughout the world, seeking to improve the user experience, bringing content closer to its final recipients. This restructuring is materialized in the emergence of Massive Scale Data Centers (MSDC) worldwide, which allows the implementation of the Cloud Computing concept. MSDC usually deploy Fat-Tree topologies, with constant bisection bandwidth among servers and multi-path routing. To take full advantage of such characteristics, specific routing protocols are needed. Multi-path routing also calls for revision of transport protocols and forwarding policies, also affected by specific MSDC applications’ traffic characteristics. Experimenting over these infrastructures is prohibitively expensive, and therefore, scalable and realistic experimentation environments are needed to research and test solutions for MSDC. In this paper, we review several environments, both single-host and distributed, which permit analyzing the pros and cons of different solutions.

Funder

Agencia Nacional de Investigación e Innovación

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference69 articles.

1. The Death of Transit?|APNIC Blog https://blog.apnic.net/2016/10/28/the-death-of-transit/

2. https://virtualization.network/Resources/Whitepapers/0b75cf2e-0c53-4891-918e-b542a5d364c5_white-paper-c11-738085.pdf

3. A Study of Non-Blocking Switching Networks

4. A scalable, commodity data center network architecture

5. Network Routing, Second Edition: Algorithms, Protocols, and Architectures;Medhi,2017

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3