The Impact of a Number of Samples on Unsupervised Feature Extraction, Based on Deep Learning for Detection Defects in Printed Circuit Boards

Author:

Volkau IharORCID,Mujeeb Abdul,Dai Wenting,Erdt Marius,Sourin Alexei

Abstract

Deep learning provides new ways for defect detection in automatic optical inspections (AOI). However, the existing deep learning methods require thousands of images of defects to be used for training the algorithms. It limits the usability of these approaches in manufacturing, due to lack of images of defects before the actual manufacturing starts. In contrast, we propose to train a defect detection unsupervised deep learning model, using a much smaller number of images without defects. We propose an unsupervised deep learning model, based on transfer learning, that extracts typical semantic patterns from defect-free samples (one-class training). The model is built upon a pre-trained VGG16 model. It is further trained on custom datasets with different sizes of possible defects (printed circuit boards and soldered joints) using only small number of normal samples. We have found that the defect detection can be performed very well on a smooth background; however, in cases where the defect manifests as a change of texture, the detection can be less accurate. The proposed study uses deep learning self-supervised approach to identify if the sample under analysis contains any deviations (with types not defined in advance) from normal design. The method would improve the robustness of the AOI process to detect defects.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference40 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent identification method for pipeline ultrasonic internal inspection;Nondestructive Testing and Evaluation;2024-08-12

2. Research on PCB defect detection using artificial intelligence: a systematic mapping study;Evolutionary Intelligence;2024-04-02

3. Extending Asset Lifespan Through Data Augmentation-Assisted Quality Control;IFAC-PapersOnLine;2024

4. Research on Brake Pad Surface Defect Detection Method based on Deep Learning;2023 International Conference on Advances in Electrical Engineering and Computer Applications (AEECA);2023-08-18

5. Comparison of Object Region Segmentation Algorithms of PCB Defect Detection;Traitement du Signal;2023-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3