Real-Time Nanoscopic Rider Safety System for Smart and Green Mobility Based upon Varied Infrastructure Parameters

Author:

Malik Faheem Ahmed,Dala Laurent,Busawon Krishna

Abstract

To create a safe bicycle infrastructure system, this article develops an intelligent embedded learning system using a combination of deep neural networks. The learning system is used as a case study in the Northumbria region in England’s northeast. It is made up of three components: (a) input data unit, (b) knowledge processing unit, and (c) output unit. It is demonstrated that various infrastructure characteristics influence bikers’ safe interactions, which is used to estimate the riskiest age and gender rider groups. Two accurate prediction models are built, with a male accuracy of 88 per cent and a female accuracy of 95 per cent. The findings concluded that different infrastructures pose varying levels of risk to users of different ages and genders. Certain aspects of the infrastructure are hazardous to all bikers. However, the cyclist’s characteristics determine the level of risk that any infrastructure feature presents. Following validation, the built learning system is interoperable under various scenarios, including current heterogeneous and future semi-autonomous and autonomous transportation systems. The results contribute towards understanding the risk variation of various infrastructure types. The study’s findings will help to improve safety and lead to the construction of a sustainable integrated cycling transportation system.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference32 articles.

1. A Methodological Framework to Estimate GHG from Travel Pattern of Tyne & Wear of Newcastle, UK with Various Policy Options using Fuzzy Logic Modal Split Model;Bell;Int. J. Eng. Sci. Invent.,2015

2. IRF World Statistics 2020,2020

3. Perceived risk and modal choice: Risk compensation in transportation systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3