Embedding of a Blade-Element Analytical Model into the SHYFEM Marine Circulation Code to Predict the Performance of Cross-Flow Turbines

Author:

Pucci Micol,Bellafiore DeboraORCID,Zanforlin StefaniaORCID,Rocchio Benedetto,Umgiesser GeorgORCID

Abstract

Our aim was to embed a 2D analytical model of a cross-flow tidal turbine inside the open-source SHYFEM marine circulation code. Other studies on the environmental impact of Tidal Energy Converters use marine circulation codes with simplified approaches: performance coefficients are fixed a priori regardless of the operating conditions and turbine geometrical parameters, and usually, the computational grid is so coarse that the device occupies one or few cells. In this work, a hybrid analytical computational fluid dynamic model based on Blade Element Momentum theory is implemented: since the turbine blades are not present in the grid, the flow is slowed down by means of bottom frictions applied to the seabed corresponding to forces equal and opposite to those that the blades would experience during their rotation. This simplified approach allowed reproducing the turbine behavior for both mechanical power generation and the turbine effect on the surrounding flow field. Moreover, the model was able to predict the interaction between the turbines belonging to a small cluster with hugely shorter calculation time compared to pure Computational Fluid Dynamics.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3