Storm Surge Inundation Analysis with Consideration of Building Shape and Layout at Ise Bay by Maximum Potential Typhoon

Author:

Nimura Masaki,Nishida Shuzo,Kawasaki Koji,Murakami Tomokazu,Shimokawa Shinya

Abstract

Global warming is feared to cause sea-level rise and intensification of typhoons, and these changes will lead to an increase in storm surge levels. For that reason, it is essential to predict the inundation areas for the maximum potential typhoon and evaluate the disaster mitigation effect of seawalls. In this study, we analyzed storm surge inundation of the inner part of Ise Bay (coast of Aichi and Mie Prefecture, Japan) due to the maximum potential typhoon in the future climate with global warming. In the analysis, a high-resolution topographical model was constructed considering buildings’ shape and arrangement and investigated the inundation process inside the seawall in detail. The results showed that buildings strongly influence the storm surge inundation process inside the seawall, and a high-velocity current is generated in some areas. It is also found that closing the seawall door delays the inundation inside the seawall, but the evacuation after inundation is more difficult under the seawall doors closed condition than opened condition when the high tide level exceeds the seawall.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3